Engineering
Latest
Scaling Up Bioimaging with Microfluidic Chips
Explore how microfluidic chips can enhance your imaging experiments by increasing control, throughput, or flexibility. In this remote, personalized workshop, participants will receive expert guidance, support and chips to run tests on their own microscopes.
Toward globally accessible neuroimaging: Building the OSI2ONE MRI Scanner in Paraguay
The Open Source Imaging Initiative has recently released a fully open source low field MRI scanner called the OSI2ONE. We are currently building this system at the Universidad Paraguayo Alemana in Asuncion, Paraguay for a neuroimaging project at a clinic in Bolivia. I will discuss the process of construction, important considerations before you build, and future work planned with this device.
Computational Imaging: Augmenting Optics with Algorithms for Biomedical Microscopy and Neural Imaging
Computational imaging seeks to achieve novel capabilities and overcome conventional limitations by combining optics and algorithms. In this seminar, I will discuss two computational imaging technologies developed in Boston University Computational Imaging Systems lab, including Intensity Diffraction Tomography and Computational Miniature Mesoscope. In our intensity diffraction tomography system, we demonstrate 3D quantitative phase imaging on a simple LED array microscope. We develop both single-scattering and multiple-scattering models to image complex biological samples. In our Computational Miniature Mesoscope, we demonstrate single-shot 3D high-resolution fluorescence imaging across a wide field-of-view in a miniaturized platform. We develop methods to characterize 3D spatially varying aberrations and physical simulator-based deep learning strategies to achieve fast and accurate reconstructions. Broadly, I will discuss how synergies between novel optical instrumentation, physical modeling, and model- and learning-based computational algorithms can push the limits in biomedical microscopy and neural imaging.
Measuring the Motions of Mice: Open source tracking with the KineMouse Wheel
Who says you can't reinvent the wheel?! This running wheel for head-fixed mice allows 3D reconstruction of body kinematics using a single camera and DeepLabCut (or similar) software. A lightweight, transparent polycarbonate floor and a mirror mounted on the inside allow two views to be captured simultaneously. All parts are commercially available or laser cut
Engineering coverage
4 items