Visual System
Latest
Prof. Dr. Laurenz Wiskott
The Institute for Neural Computation is looking for a postdoc in the field of Computational Neuroscience. The position is part of the group 'Theory of Neural Systems' and offers the opportunity to develop your own research profile and establish an independent research group. The research topic should be in the field of computational neuroscience on a system level, in particular modeling the visual system, episodic memory, or navigation in mammals. Collaborations with colleagues at the institute are welcome. The tasks include independent research projects and publications, acquiring third party funding, teaching, supervising student projects and your own PhD projects, and active participation in the local research environment.
Ján Antolík
The postdoctoral position is within the Computational Systems Neuroscience Group (CSNG) at Charles University, Prague, focusing on computational neuroscience and neuro-prosthetic system design. The project goals include developing a large-scale model of electrical stimulation in the primary visual cortex for neuro-prosthetic vision restoration, creating and refining models of the primary visual cortex and its electrical stimulation, simulating the impact of external stimulation on cortical activity, developing novel machine learning methods to link simulated cortical activity to expected visual perceptions, and developing stimulation protocols for neuro-prosthetic systems. This project is undertaken as a part of a larger consortium of Czech experimental and theoretical neuroscience teams.
Ján Antolík
A postdoctoral position within the Computational Systems Neuroscience Group (CSNG) at Charles University, Prague, focusing on computational neuroscience and neuro-prosthetic system design. The group explores the intricacies of the visual system, sensory coding, and neuro-prosthetic solutions using computational approaches such as large-scale biologically detailed spiking network models, firing-rate models of development, and modern machine learning techniques. The team is dedicated to understanding visual perception and its restoration via neuro-prosthetic devices. Multiple project topics are available and can be adjusted to the interest and background of the applicant, including modeling electrical stimulation in a spiking model of the primary visual cortex, deep-neural networks in visual neuroscience, study of cortical dynamics in the visual cortex, and biologically detailed spiking large-scale models of early visual cortical pathway from Retina to V4.
Dr. Udo Ernst
In this project we want to study organization and optimization of flexible information processing in neural networks, with specific focus on the visual system. You will use network modelling, numerical simulation, and mathematical analysis to investigate fundamental aspects of flexible computation such as task-dependent coordination of multiple brain areas for efficient information processing, as well as the emergence of flexible circuits originating from learning schemes which simultaneously optimize for function and flexibility. These studies will be complemented by biophysically realistic modelling and data analysis in collaboration with experimental work done in the lab of Prof. Dr. Andreas Kreiter, also at the University of Bremen. Here we will investigate selective attention as a central aspect of flexibility in the visual system, involving task-dependent coordination of multiple visual areas.
Dr. Udo Ernst
The Computational Neurophysics lab at the University of Bremen headed by Dr. Udo Ernst offers at the earliest date possible: Postdoc / PhD student in Computational Neuroscience for 3 years. In this project we want to study organization and optimization of flexible information processing in neural networks, with specific focus on the visual system. You will use network modelling, numerical simulation, and mathematical analysis to investigate fundamental aspects of flexible computation such as task-dependent coordination of multiple brain areas for efficient information processing, as well as the emergence of flexible circuits originating from learning schemes which simultaneously optimize for function and flexibility. These studies will be complemented by biophysically realistic modelling and data analysis in collaboration with experimental work. Here we will investigate selective attention as a central aspect of flexibility in the visual system, involving task-dependent coordination of multiple visual areas.
Visual System coverage
5 items