TopicNeuro

extracellular matrix

7 Seminars6 ePosters

Latest

SeminarNeuroscience

Cellular Crosstalk in Brain Development, Evolution and Disease

Silvia Cappello
Molecular Physiology of Neurogenesis at the Ludwig Maximilian University of Munich
Oct 2, 2025

Cellular crosstalk is an essential process during brain development and is influenced by numerous factors, including cell morphology, adhesion, the local extracellular matrix and secreted vesicles. Inspired by mutations associated with neurodevelopmental disorders, we focus on understanding the role of extracellular mechanisms essential for the proper development of the human brain. Therefore, we combine 2D and 3D in vitro human models to better understand the molecular and cellular mechanisms involved in progenitor proliferation and fate, migration and maturation of excitatory and inhibitory neurons during human brain development and tackle the causes of neurodevelopmental disorders.

SeminarNeuroscienceRecording

Blood-brain barrier dysfunction in epilepsy: Time for translation

Alon Friedman
Dalhousie University
Feb 28, 2024

The neurovascular unit (NVU) consists of cerebral blood vessels, neurons, astrocytes, microglia, and pericytes. It plays a vital role in regulating blood flow and ensuring the proper functioning of neural circuits. Among other, this is made possible by the blood-brain barrier (BBB), which acts as both a physical and functional barrier. Previous studies have shown that dysfunction of the BBB is common in most neurological disorders and is associated with neural dysfunction. Our studies have demonstrated that BBB dysfunction results in the transformation of astrocytes through transforming growth factor beta (TGFβ) signaling. This leads to activation of the innate neuroinflammatory system, changes in the extracellular matrix, and pathological plasticity. These changes ultimately result in dysfunction of the cortical circuit, lower seizure threshold, and spontaneous seizures. Blocking TGFβ signaling and its associated pro-inflammatory pathway can prevent this cascade of events, reduces neuroinflammation, repairs BBB dysfunction, and prevents post-injury epilepsy, as shown in experimental rodents. To further understand and assess BBB integrity in human epilepsy, we developed a novel imaging technique that quantitatively measures BBB permeability. Our findings have confirmed that BBB dysfunction is common in patients with drug-resistant epilepsy and can assist in identifying the ictal-onset zone prior to surgery. Current clinical studies are ongoing to explore the potential of targeting BBB dysfunction as a novel treatment approach and investigate its role in drug resistance, the spread of seizures, and comorbidities associated with epilepsy.

SeminarNeuroscience

Cellular crosstalk in Neurodevelopmental Disorders

Silvia Cappello
Max Planck Institute
Sep 27, 2023

Cellular crosstalk is an essential process during brain development and it is influenced by numerous factors, including the morphology of the cells, their adhesion molecules, the local extracellular matrix and the secreted vesicles. Inspired by mutations associated with neurodevelopmental disorders, we focus on understanding the role of extracellular mechanisms essential for the correct development of the human brain. Hence, we combine the in vivo mouse model and the in vitro human-derived neurons, cerebral organoids, and dorso-ventral assembloids in order to better comprehend the molecular and cellular mechanisms involved in ventral progenitors’ proliferation and fate as well as migration and maturation of inhibitory neurons during human brain development and tackle the causes of neurodevelopmental disorders. We particularly focus on mutations in genes influencing cell-cell contacts, extracellular matrix, and secretion of vesicles and therefore study intrinsic and extrinsic mechanisms contributing to the formation of the brain. Our data reveal an important contribution of cell non-autonomous mechanisms in the development of neurodevelopmental disorders.

SeminarNeuroscienceRecording

New Mechanisms of Extracellular Matrix Remodeling

Silvio Rizzoli
University of Goettingen School of Medicine
Jan 31, 2022

In the adult brain, synapses are tightly enwrapped by lattices of extracellular matrix that consist of extremely long-lived molecules. These lattices are deemed to stabilize synapses, restrict the reorganization of their transmission machinery, and prevent them from undergoing structural or morphological changes. At the same time, they are expected to retain some degree of flexibility to permit occasional events of synaptic plasticity. The recent understanding that structural changes to synapses are significantly more frequent than previously assumed (occurring even on a timescale of minutes) has called for a mechanism that allows continual and energy-efficient remodeling of the ECM at synapses. I review in the talk our recent work showcasing such a process, based on the constitutive recycling of synaptic ECM molecules. I discuss the key characteristics of this mechanism, focusing on its roles in mediating synaptic transmission and plasticity, and speculate on additional potential functions in neuronal signaling.

SeminarNeuroscienceRecording

Molecular controls over corticospinal neuron axon branching at specific spinal segments

Yasuhiro Itoh
Harvard
Oct 28, 2020

Corticospinal neurons (CSN) are the cortical projection neurons that innervate the spinal cord and some brainstem targets with segmental precision to control voluntary movement of specific functional motor groups, limb sections, or individual digits, yet molecular regulation over CSN segmental target specificity is essentially unknown. CSN subpopulations exhibit striking axon targeting specificity from development into maturity: Evolutionarily newer rostrolateral CSN exclusively innervate bulbar-cervical targets (CSNBC-lat), while evolutionarily older caudomedial CSN (CSNmed) are more heterogeneous, with distinct subpopulations extending axons to either bulbar-cervical or thoraco-lumbar segments. The cervical cord, with its evolutionarily enhanced precision of forelimb movement, is innervated by multiple CSN subpopulations, suggesting inter-neuronal interactions in establishing corticospinal connectivity. I identify that Lumican, previously unrecognized in axon development, controls the specificity of cervical spinal cord innervation by CSN. Remarkably, Lumican, an extracellular matrix protein expressed by CSNBC-lat, non-cell-autonomously suppresses axon collateralization in the cervical cord by CSNmed. Intersectional viral labeling and mouse genetics further identify that Lumican controls axon collateralization by multiple subpopulations in caudomedial sensorimotor cortex. These results identify inter-axonal molecular crosstalk between CSN subpopulations as a novel mechanism controlling corticospinal connectivity and competitive specificity. Further, this mechanism has potential implications for evolutionary diversification of corticospinal circuitry with finer scale precision. "" Complementing this work, to comprehensively elucidate related axon projection mechanisms functioning at tips of growing CSN axons in vivo, I am currently applying experimental and analytic approaches recently developed in my postdoc lab (Poulopoulos*, Murphy*, Nature, 2019) to quantitatively and subcellularly “map” RNA and protein molecular machinery of subtype-specific growth cones, in parallel to their parent somata, isolated directly in vivo from developing subcerebral projection neurons (SCPN; the broader cortical output neuron population targeting both brainstem and spinal cord; includes CSN). I am investigating both normal development and GC-soma dysregulation with mutation of central CSN-SCPN transcriptional regulator Ctip2/Bcl11b.

ePosterNeuroscience

Dynamic transcellular molecular exchange: A novel view on extracellular matrix remodelling

Svilen Georgiev, Silvio Rizzoli

FENS Forum 2024

ePosterNeuroscience

Extracellular matrix and sharp wave ripple complex changes following treatment with Zuranolone

Samantha Deasy, Matthew Amontree, Eric Thorland, Katherine Conant

FENS Forum 2024

ePosterNeuroscience

Extracellular matrix and microglia interactions in stroke recovery

Egor Dzyubenko, Dirk M. Hermann

FENS Forum 2024

ePosterNeuroscience

Impact of ventral hippocampal chondroitinase-ABC infusion on perineuronal nets and diffuse extracellular matrix in male Lister hooded rats

Jacob Juty, Rachel Grasmeder Allen, Jacco Renstrom, Jennifer Fletcher, Charlotte Taylor, John Gigg, Michael Harte, Tobias Bast

FENS Forum 2024

ePosterNeuroscience

Integrity of neural extracellular matrix is required for microglia-mediated synaptic remodeling

Carla Cangalaya, Weilun Sun, Stoyan Stoyanov, Rita-Ildiko Dunay, Alexander Dityatev

FENS Forum 2024

ePosterNeuroscience

Upregulated extracellular matrix-related genes and impaired synaptic activity in dopaminergic and hippocampal neurons derived from Parkinson's disease patients with PINK1 and PRKN mutations

Utkarsh Tripathi, Idan Rosh, Ran Ben Ezer, Ritu Nayak, Yara Hussein, Ashwani Choudhary, Jose Djamus, Andreea Manole, Henry Houlden, Fred Gage, Shani Stern

FENS Forum 2024

extracellular matrix coverage

13 items

Seminar7
ePoster6
Domain spotlight

Explore how extracellular matrix research is advancing inside Neuro.

Visit domain