Dynamics
Latest
Trackoscope: A low-cost, open, autonomous tracking microscope for long-term observations of microscale organisms
Cells and microorganisms are motile, yet the stationary nature of conventional microscopes impedes comprehensive, long-term behavioral and biomechanical analysis. The limitations are twofold: a narrow focus permits high-resolution imaging but sacrifices the broader context of organism behavior, while a wider focus compromises microscopic detail. This trade-off is especially problematic when investigating rapidly motile ciliates, which often have to be confined to small volumes between coverslips affecting their natural behavior. To address this challenge, we introduce Trackoscope, an 2-axis autonomous tracking microscope designed to follow swimming organisms ranging from 10μm to 2mm across a 325 square centimeter area for extended durations—ranging from hours to days—at high resolution. Utilizing Trackoscope, we captured a diverse array of behaviors, from the air-water swimming locomotion of Amoeba to bacterial hunting dynamics in Actinosphaerium, walking gait in Tardigrada, and binary fission in motile Blepharisma. Trackoscope is a cost-effective solution well-suited for diverse settings, from high school labs to resource-constrained research environments. Its capability to capture diverse behaviors in larger, more realistic ecosystems extends our understanding of the physics of living systems. The low-cost, open architecture democratizes scientific discovery, offering a dynamic window into the lives of previously inaccessible small aquatic organisms.
A macaque connectome for simulating large-scale network dynamics in The VirtualBrain
TheVirtualBrain (TVB; thevirtualbrain.org) is a software platform for simulating whole-brain network dynamics. TVB models link biophysical parameters at the cellular level with systems-level functional neuroimaging signals. Data available from animal models can provide vital constraints for the linkage across spatial and temporal scales. I will describe the construction of a macaque cortical connectome as an initial step towards a comprehensive multi-scale macaque TVB model. I will also describe our process of validating the connectome and show an example simulation of macaque resting-state dynamics using TVB. This connectome opens the opportunity for the addition of other available data from the macaque, such as electrophysiological recordings and receptor distributions, to inform multi-scale models of brain dynamics. Future work will include extensions to neurological conditions and other nonhuman primate species.
Dynamics coverage
2 items