Latest

SeminarOpen SourceRecording

Open-source neurotechnologies for imaging cortex-wide neural activity in behaving animals

Suhasa Kodandaramaiah
University of Minnesota
May 4, 2022

Neural computations occurring simultaneously in multiple cerebral cortical regions are critical for mediating behaviors. Progress has been made in understanding how neural activity in specific cortical regions contributes to behavior. However, there is a lack of tools that allow simultaneous monitoring and perturbing neural activity from multiple cortical regions. We have engineered a suite of technologies to enable easy, robust access to much of the dorsal cortex of mice for optical and electrophysiological recordings. First, I will describe microsurgery robots that can programmed to perform delicate microsurgical procedures such as large bilateral craniotomies across the cortex and skull thinning in a semi-automated fashion. Next, I will describe digitally designed, morphologically realistic, transparent polymer skulls that allow long-term (+300 days) optical access. These polymer skulls allow mesoscopic imaging, as well as cellular and subcellular resolution two-photon imaging of neural structures up to 600 µm deep. We next engineered a widefield, miniaturized, head-mounted fluorescence microscope that is compatible with transparent polymer skull preparations. With a field of view of 8 × 10 mm2 and weighing less than 4 g, the ‘mini-mScope’ can image most of the mouse dorsal cortex with resolutions ranging from 39 to 56 µm. We used the mini-mScope to record mesoscale calcium activity across the dorsal cortex during sensory-evoked stimuli, open field behaviors, social interactions and transitions from wakefulness to sleep.

SeminarOpen SourceRecording

The Open-Source UCLA Miniscope Project

Daniel Aharoni
University of California, Los Angeles
Oct 27, 2021

The Miniscope Project -- an open-source collaborative effort—was created to accelerate innovation of miniature microscope technology and to increase global access to this technology. Currently, we are working on advancements ranging from optogenetic stimulation and wire-free operation to simultaneous optical and electrophysiological recording. Using these systems, we have uncovered mechanisms underlying temporal memory linking and investigated causes of cognitive deficits in temporal lobe epilepsy. Through innovation and optimization, this work aims to extend the reach of neuroscience research and create new avenues of scientific inquiry.

SeminarOpen SourceRecording

Open-source tools for systems neuroscience

Jakob Voigts
MIT and Open Ephys
Jun 25, 2021

Open-source tools are gaining an increasing foothold in neuroscience. The rising complexity of experiments in systems neuroscience has led to a need for multiple parts of experiments to work together seamlessly. This means that open-source tools that freely interact with each other and can be understood and modified more easily allow scientists to conduct better experiments with less effort than closed tools. Open Ephys is an organization with team members distributed all around the world. Our mission is to advance our understanding of the brain by promoting community ownership of the tools we use to study it. We are making and distributing cutting edge tools that exploit modern technology to bring down the price and complexity of neuroscience experiments. A large component of this is to take tools that were developed in academic labs and helping with documentation, support, and distribution. More recently, we have been working on bringing high-quality manufacturing, distribution, warranty, and support to open source tools by partnering with OEPS in Portugal. We are now also establishing standards that make it possible to combine methods, such as miniaturized microscopes, electrode drive implants, and silicon probes seamlessly in one system. In the longer term, our development of new tools, interfaces and our standardization efforts have the goal of making it possible for scientists to easily run complex experiments that span from complex behaviors and tasks, multiple recording modalities, to easy access to data processing pipelines.

SeminarOpen SourceRecording

SpikeInterface

Alessio Buccino
ETH Zurich
Jun 11, 2021

Much development has been directed toward improving the performance and automation of spike sorting. This continuous development, while essential, has contributed to an over-saturation of new, incompatible tools that hinders rigorous benchmarking and complicates reproducible analysis. To address these limitations, we developed SpikeInterface, a Python framework designed to unify preexisting spike sorting technologies into a single codebase and to facilitate straightforward comparison and adoption of different approaches. With a few lines of code, researchers can reproducibly run, compare, and benchmark most modern spike sorting algorithms; pre-process, post-process, and visualize extracellular datasets; validate, curate, and export sorting outputs; and more. In this presentation, I will provide an overview of SpikeInterface and, with applications to real and simulated datasets, demonstrate how it can be utilized to reduce the burden of manual curation and to more comprehensively benchmark automated spike sorters.

SeminarOpen SourceRecording

Kilosort

Marius Pachitariu
HHMI Janelia Research Campus
May 28, 2021

Kilosort is a spike sorting pipeline for large-scale electrophysiology. Advances in silicon probe technology mean that in vivo electrophysiological recordings from hundreds of channels will soon become commonplace. To interpret these recordings we need fast, scalable and accurate methods for spike sorting, whose output requires minimal time for manual curation. Kilosort is a spike sorting framework that meets these criteria, and show that it allows rapid and accurate sorting of large-scale in vivo data. Kilosort models the recorded voltage as a sum of template waveforms triggered on the spike times, allowing overlapping spikes to be identified and resolved. Rapid processing is achieved thanks to a novel low-dimensional approximation for the spatiotemporal distribution of each template, and to batch-based optimization on GPUs. Kilosort is an important step towards fully automated spike sorting of multichannel electrode recordings, and is freely available.

electrophysiology coverage

5 items

Seminar5
Domain spotlight

Explore how electrophysiology research is advancing inside Open Source.

Visit domain