assembly
Latest
Magnetic Handshake Materials
Biological materials gain complexity from the programmable nature of their components. To manufacture materials with comparable complexity synthetically, we need to create building blocks with low crosstalk so that they only bind to their desired partners. Canonically, these building blocks are made using DNA strands or proteins to achieve specificity. Here we propose a new materials platform, termed Magnetic Handshake Materials, in which we program interactions through designing magnetic dipole patterns. This is a completely synthetic platform, enabled by magnetic printing technology, which is easier to both model theoretically and control experimentally. In this seminar, I will give an overview of the development of the Magnetic Handshake Materials platform, ranging from interaction, assembly to function design.
Membrane mechanics meet minimal manifolds
Changes in the geometry and topology of self-assembled membranes underlie diverse processes across cellular biology and engineering. Similar to lipid bilayers, monolayer colloidal membranes studied by the Sharma (IISc Bangalore) and Dogic (UCSB) Labs have in-plane fluid-like dynamics and out-of-plane bending elasticity, but their open edges and micron length scale provide a tractable system to study the equilibrium energetics and dynamic pathways of membrane assembly and reconfiguration. First, we discuss how doping colloidal membranes with short miscible rods transforms disk-shaped membranes into saddle-shaped minimal surfaces with complex edge structures. Theoretical modeling demonstrates that their formation is driven by increasing positive Gaussian modulus, which in turn is controlled by the fraction of short rods. Further coalescence of saddle-shaped surfaces leads to exotic topologically distinct structures, including shapes similar to catenoids, tri-noids, four-noids, and higher order structures. We then mathematically explore the mechanics of these catenoid-like structures subject to an external axial force and elucidate their intimate connection to two problems whose solutions date back to Euler: the shape of an area-minimizing soap film and the buckling of a slender rod under compression. A perturbation theory argument directly relates the tensions of membranes to the stability properties of minimal surfaces. We also investigate the effects of including a Gaussian curvature modulus, which, for small enough membranes, causes the axial force to diverge as the ring separation approaches its maximal value.
Towards a Theory of Microbial Ecosystems
A major unresolved question in microbiome research is whether the complex ecological patterns observed in surveys of natural communities can be explained and predicted by fundamental, quantitative principles. Bridging theory and experiment is hampered by the multiplicity of ecological processes that simultaneously affect community assembly and a lack of theoretical tools for modeling diverse ecosystems. Here, I will present a simple ecological model of microbial communities that reproduces large-scale ecological patterns observed across multiple natural and experimental settings including compositional gradients, clustering by environment, diversity/harshness correlations, and nestedness. Surprisingly, our model works despite having a “random metabolisms” and “random consumer preferences”. This raises the natural of question of why random ecosystems can describe real-world experimental data. In the second, more theoretical part of the talk, I will answer this question by showing that when a community becomes diverse enough, it will always self-organize into a stable state whose properties are well captured by a “typical random ecosystems”.
Mechano-adaptation in a large protein complex
Macromolecular protein complexes perform essential biological functions across life forms. A fundamental, though yet unsolved question in biology is how the function of such complexes is regulated by intracellular or extracellular signals. For instance, we have little understanding of how forces affect multi-protein machines whose function is often mechanical in nature. We address this question by studying the bacterial flagellar motor, a large complex that powers swimming motility in many bacteria. This rotary motor autonomously adapts to changes in mechanical load by adding or removing force-generating ‘stator’ units that power rotation. In the bacterium Escherichia coli, up to 11 units drive the motor at high load while all the units are released at low load. We manipulate motor load using electrorotation, a technique in which a rapidly rotating electric field applies an external torque on the motor. This allows us to change motor load at will and measure the resulting stator dynamics at single-unit resolution. We found that the force generated by the stator units controls their unbinding, forming a feedback loop that leads to autoregulation of the assembly. We complemented our experiments with theoretical models that provide insight into the underlying molecular interactions. Torque-dependent remodeling takes place within seconds, making it a highly responsive control mechanism, one that is mediated by the mechano-chemical tuning of protein interactions.
Nonequilibrium self-assembly and time-irreversibility in living systems
Far-from-equilibrium processes constantly dissipate energy while converting a free-energy source to another form of energy. Living systems, for example, rely on an orchestra of molecular motors that consume chemical fuel to produce mechanical work. In this talk, I will describe two features of life, namely, time-irreversibility, and nonequilibrium self-assembly. Time irreversibility is the hallmark of nonequilibrium dissipative processes. Detecting dissipation is essential for our basic understanding of the underlying physical mechanism, however, it remains a challenge in the absence of observable directed motion, flows, or fluxes. Additional difficulty arises in complex systems where many internal degrees of freedom are inaccessible to an external observer. I will introduce a novel approach to detect time irreversibility and estimate the entropy production from time-series measurements, even in the absence of observable currents. This method can be implemented in scenarios where only partial information is available and thus provides a new tool for studying nonequilibrium phenomena. Further, I will explore the added benefits achieved by nonequilibrium driving for self-assembly, identify distinctive collective phenomena that emerge in a nonequilibrium self-assembly setting, and demonstrate the interplay between the assembly speed, kinetic stability, and relative population of dynamical attractors.
Tutorial: Cell mimics to study active movements and deformations by actin assembly
Internal structure of honey bee swarms for mechanical stability and division of labor
The western honey bee (Apis mellifera) is a domesticated pollinator famous for living in highly social colonies. In the spring, thousands of worker bees and a queen fly from their hive in search of a new home. They self-assemble into a swarm that hangs from a tree branch for several days. We reconstruct the non-isotropic arrangement of worker bees inside swarms made up of 3000 - 8000 bees using x-ray computed tomography. Some bees are stationary and hang from the attachment board or link their bodies into hanging chains to support the swarm structure. The remaining bees use the chains as pathways to walk around the swarm, potentially to feed the queen or communicate with one another. The top layers of bees bear more weight per bee than the remainder of the swarm, suggesting that bees are optimizing for additional factors besides weight distribution. Despite not having a clear leader, honey bees are able to organize into a swarm that protects the queen and remains stable until scout bees locate a new hive.
Frustrated Self-Assembly of Non-Euclidean Crystals of Nanoparticles
Self-organized complex structures in nature, e.g., viral capsids, hierarchical biopolymers, and bacterial flagella, offer efficiency, adaptability, robustness, and multi-functionality. Can we program the self-assembly of three-dimensional (3D) complex structures using simple building blocks, and reach similar or higher level of sophistication in engineered materials? Here we present an analytic theory for the self-assembly of polyhedral nanoparticles (NPs) based on their crystal structures in non-Euclidean space. We show that the unavoidable geometrical frustration of these particle shapes, combined with competing attractive and repulsive interparticle interactions, lead to controllable self-assembly of structures of complex order. Applying this theory to tetrahedral NPs, we find high-yield and enantiopure self-assembly of helicoidal ribbons, exhibiting qualitative agreement with experimental observations. We expect that this theory will offer a general framework for the self-assembly of simple polyhedral building blocks into rich complex morphologies with new material capabilities such as tunable optical activity, essential for multiple emerging technologies.
Acoustically Levitated Granular Matter
Granular matter can serve as a prototype for exploring the rich physics of many-body systems driven far from equilibrium. This talk will outline a new direction for granular physics with macroscopic particles, where acoustic levitation compensates the forces due to gravity and eliminates frictional interactions with supporting surfaces in order to focus on particle interactions. Levitating small particles by intense ultrasound fields in air makes it possible to manipulate and control their positions and assemble them into larger aggregates. The small air viscosity implies that the regime of underdamped dynamics can be explored, where inertial effects are important, in contrast to typical colloids in a liquid, where inertia can be neglected. Sound scattered off individual, levitated solid particles gives rise to controllable attractive forces with neighboring particles. I will discuss some of the key concepts underlying acoustic levitation, describe how detuning an acoustic cavity can introduce active fluctuations that control the assembly statistics of small levitated particles clusters, and give examples of how interactions between neighboring levitated objects can be controlled by their shape.
Magic numbers in protein phase transitions
Biologists have recently come to appreciate that eukaryotic cells are home to a multiplicity of non-membrane bound compartments, many of which form and dissolve as needed for the cell to function. These dynamical “condensates” enable many central cellular functions – from ribosome assembly, to RNA regulation and storage, to signaling and metabolism. While it is clear that these compartments represent a type of separated phase, what controls their formation, how specific biological components are included or excluded, and how these structures influence physiological and biochemical processes remain largely mysterious. I will discuss recent experiments on phase separated condensates both in vitro and in vivo, and will present theoretical results that highlight a novel “magic number” effect relevant to the formation and control of two-component phase separated condensates.
Non-equilibrium molecular assembly in reshaping and cutting cells
A key challenge in modern soft matter is to identify the principles that govern the organisation and functionality in non-equilibrium systems. Current research efforts largely focus on non-equilibrium processes that occur either at the single-molecule scale (e.g. protein and DNA conformations under driving forces), or at the scale of whole tissues, organisms, and active colloidal and microscopic objects. However, the range of the scales in-between — from molecules to large-scaled molecular assemblies that consume energy and perform work — remains under-explored. This is, nevertheless, the scale that is crucial for the function of a living cell, where molecular self-assembly driven far from equilibrium produces mechanical work needed for cell reshaping, transport, motility, division, and healing. Today I will discuss physical modelling of active elastic filaments, called ESCRT-III filaments, that dynamically assemble and disassemble on cell membranes. This dynamic assembly changes the filaments’ shape and mechanical properties and leads to the remodelling and cutting of cells. I will present a range of experimental comparisons of our simulation results: from ESCRT-III-driven trafficking in eukaryotes to division of evolutionary simple archaeal cells.
Synthetic Structural Biology: Exploiting viral assembly principles as an anti-viral strategy
Physics of virus assembly
“LIM Domain Proteins in Cell Mechanotransduction”
My lab studies the design principles of cytoskeletal materials the drive cellular morphogenesis, with a focus on contractile machinery in adherent cells. In addition to force generation, a key feature of these materials are distributed force sensors which allow for rapid assembly, adaptation, repair and disintegration. Here I will discuss our recent identification of 18 proteins from the zyxin, paxillin, Tes and Enigma families with mechanosensitive LIM (Lin11, Isl- 1 & Mec-3) domains. We developed a screen to assess the force-dependent localization of LIM domain-containing region (LCR) from ~30 genes to the actin cytoskeleton and identified features common to their force-sensitive localization. Through in vitro reconstitution, we found that the LCR binds directly to mechanically stressed actin filaments. Moreover, the LCR from the fission yeast protein paxillin-like 1 is also mechanosensitive, suggesting force-sensitivity is highly conserved. We speculate that the evolutionary emergence of contractile F-actin machinery coincided with, or required, proteins that could report on the stresses present there to maintain homeostasis of actively stressed networks.
Mechanical Homeostasis of the Actin Cytoskeleton
My lab studies the design principles of cytoskeletal materials the drive cellular morphogenesis, with a focus on contractile machinery in adherent cells. In addition to force generation, a key feature of these materials are distributed force sensors which allow for rapid assembly, adaptation, repair and disintegration. Here I will describe how optogenetic control of RhoA GTPase is a powerful and versatile force spectroscopy approach of cytoskeletal assemblies and its recent use to probe repair response in actomyosin stress fibers. I will also describe our recent identification of 18 proteins from the zyxin, paxillin, Tes and Enigma families with mechanosensitive LIM (Lin11, Isl- 1 & Mec-3) domains that bind exclusively to mechanically stressed actin filaments. Our results suggest that the evolutionary emergence of contractile F-actin machinery coincided with, or required, proteins that could report on the stresses present there to maintain homeostasis of actively stressed networks.
assembly coverage
15 items