artificial intelligence
Latest
Steven M. Weisberg
The Department of PSYCHOLOGY at the UNIVERSITY OF FLORIDA, College of Liberal Arts and Sciences, invites applications for a full-time, nine-month, tenure-accruing, OPEN-AREA Assistant Professor with special emphasis in QUANTITATIVE METHODS, beginning August 16, 2024. We encourage applications from any research orientation in psychology and the position is open to candidates who employ a wide variety of methodological tools or approaches (including, but not limited to, computational modeling, statistics, artificial intelligence, structural equation modeling, multilevel modeling, network analysis, and longitudinal data analysis). Applicants will be expected to maintain an outstanding program of research with high potential for external funding, teach psychology graduate and undergraduate courses, advise students, and provide service to the institution.
A personal journey on understanding intelligence
The focus of this talk is not about my research in AI or Robotics but my own journey on trying to do research and understand intelligence in a rapidly evolving research landscape. I will trace my path from conducting early-stage research during graduate school, to working on practical solutions within a startup environment, and finally to my current role where I participate in more structured research at a major tech company. Through these varied experiences, I will provide different perspectives on research and talk about how my core beliefs on intelligence have changed and sometimes even been compromised. There are no lessons to be learned from my stories, but hopefully they will be entertaining.
Short and Synthetically Distort: Investor Reactions to Deepfake Financial News
Recent advances in artificial intelligence have led to new forms of misinformation, including highly realistic “deepfake” synthetic media. We conduct three experiments to investigate how and why retail investors react to deepfake financial news. Results from the first two experiments provide evidence that investors use a “realism heuristic,” responding more intensely to audio and video deepfakes as their perceptual realism increases. In the third experiment, we introduce an intervention to prompt analytical thinking, varying whether participants make analytical judgments about credibility or intuitive investment judgments. When making intuitive investment judgments, investors are strongly influenced by both more and less realistic deepfakes. When making analytical credibility judgments, investors are able to discern the non-credibility of less realistic deepfakes but struggle with more realistic deepfakes. Thus, while analytical thinking can reduce the impact of less realistic deepfakes, highly realistic deepfakes are able to overcome this analytical scrutiny. Our results suggest that deepfake financial news poses novel threats to investors.
Use of Artificial Intelligence by Law Enforcement Authorities in the EU
Recently, artificial intelligence (AI) has become a global priority. Rapid and ongoing technological advancements in AI have prompted European legislative initiatives to regulate its use. In April 2021, the European Commission submitted a proposal for a Regulation that would harmonize artificial intelligence rules across the EU, including the law enforcement sector. Consequently, law enforcement officials await the outcome of the ongoing inter-institutional negotiations (trilogue) with great anticipation, as it will define how to capitalize on the opportunities presented by AI and how to prevent criminals from abusing this emergent technology.
How AI is advancing Clinical Neuropsychology and Cognitive Neuroscience
This talk aims to highlight the immense potential of Artificial Intelligence (AI) in advancing the field of psychology and cognitive neuroscience. Through the integration of machine learning algorithms, big data analytics, and neuroimaging techniques, AI has the potential to revolutionize the way we study human cognition and brain characteristics. In this talk, I will highlight our latest scientific advancements in utilizing AI to gain deeper insights into variations in cognitive performance across the lifespan and along the continuum from healthy to pathological functioning. The presentation will showcase cutting-edge examples of AI-driven applications, such as deep learning for automated scoring of neuropsychological tests, natural language processing to characeterize semantic coherence of patients with psychosis, and other application to diagnose and treat psychiatric and neurological disorders. Furthermore, the talk will address the challenges and ethical considerations associated with using AI in psychological research, such as data privacy, bias, and interpretability. Finally, the talk will discuss future directions and opportunities for further advancements in this dynamic field.
Forensic use of face recognition systems for investigation
With the increasing development of automatic systems and artificial intelligence, face recognition is becoming increasingly important in forensic and civil contexts. However, face recognition has yet to be thoroughly empirically studied to provide an adequate scientific and legal framework for investigative and court purposes. This observation sets the foundation for the research. We focus on issues related to face images and the use of automatic systems. Our objective is to validate a likelihood ratio computation methodology for interpreting comparison scores from automatic face recognition systems (score-based likelihood ratio, SLR). We collected three types of traces: portraits (ID), video surveillance footage recorded by ATM and by a wide-angle camera (CCTV). The performance of two automatic face recognition systems is compared: the commercial IDEMIA Morphoface (MFE) system and the open source FaceNet algorithm.
artificial intelligence coverage
6 items
Explore how artificial intelligence research is advancing inside Psychology.
Visit domain